If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3.2x2 + -7.9x + 3.6) + (2.3x2 + -6.3x + -8.8) = 0 Reorder the terms: (3.6 + -7.9x + 3.2x2) + (2.3x2 + -6.3x + -8.8) = 0 Remove parenthesis around (3.6 + -7.9x + 3.2x2) 3.6 + -7.9x + 3.2x2 + (2.3x2 + -6.3x + -8.8) = 0 Reorder the terms: 3.6 + -7.9x + 3.2x2 + (-8.8 + -6.3x + 2.3x2) = 0 Remove parenthesis around (-8.8 + -6.3x + 2.3x2) 3.6 + -7.9x + 3.2x2 + -8.8 + -6.3x + 2.3x2 = 0 Reorder the terms: 3.6 + -8.8 + -7.9x + -6.3x + 3.2x2 + 2.3x2 = 0 Combine like terms: 3.6 + -8.8 = -5.2 -5.2 + -7.9x + -6.3x + 3.2x2 + 2.3x2 = 0 Combine like terms: -7.9x + -6.3x = -14.2x -5.2 + -14.2x + 3.2x2 + 2.3x2 = 0 Combine like terms: 3.2x2 + 2.3x2 = 5.5x2 -5.2 + -14.2x + 5.5x2 = 0 Solving -5.2 + -14.2x + 5.5x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 5.5 the coefficient of the squared term: Divide each side by '5.5'. -0.9454545455 + -2.581818182x + x2 = 0 Move the constant term to the right: Add '0.9454545455' to each side of the equation. -0.9454545455 + -2.581818182x + 0.9454545455 + x2 = 0 + 0.9454545455 Reorder the terms: -0.9454545455 + 0.9454545455 + -2.581818182x + x2 = 0 + 0.9454545455 Combine like terms: -0.9454545455 + 0.9454545455 = 0.0000000000 0.0000000000 + -2.581818182x + x2 = 0 + 0.9454545455 -2.581818182x + x2 = 0 + 0.9454545455 Combine like terms: 0 + 0.9454545455 = 0.9454545455 -2.581818182x + x2 = 0.9454545455 The x term is -2.581818182x. Take half its coefficient (-1.290909091). Square it (1.666446281) and add it to both sides. Add '1.666446281' to each side of the equation. -2.581818182x + 1.666446281 + x2 = 0.9454545455 + 1.666446281 Reorder the terms: 1.666446281 + -2.581818182x + x2 = 0.9454545455 + 1.666446281 Combine like terms: 0.9454545455 + 1.666446281 = 2.6119008265 1.666446281 + -2.581818182x + x2 = 2.6119008265 Factor a perfect square on the left side: (x + -1.290909091)(x + -1.290909091) = 2.6119008265 Calculate the square root of the right side: 1.616137626 Break this problem into two subproblems by setting (x + -1.290909091) equal to 1.616137626 and -1.616137626.Subproblem 1
x + -1.290909091 = 1.616137626 Simplifying x + -1.290909091 = 1.616137626 Reorder the terms: -1.290909091 + x = 1.616137626 Solving -1.290909091 + x = 1.616137626 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.290909091' to each side of the equation. -1.290909091 + 1.290909091 + x = 1.616137626 + 1.290909091 Combine like terms: -1.290909091 + 1.290909091 = 0.000000000 0.000000000 + x = 1.616137626 + 1.290909091 x = 1.616137626 + 1.290909091 Combine like terms: 1.616137626 + 1.290909091 = 2.907046717 x = 2.907046717 Simplifying x = 2.907046717Subproblem 2
x + -1.290909091 = -1.616137626 Simplifying x + -1.290909091 = -1.616137626 Reorder the terms: -1.290909091 + x = -1.616137626 Solving -1.290909091 + x = -1.616137626 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.290909091' to each side of the equation. -1.290909091 + 1.290909091 + x = -1.616137626 + 1.290909091 Combine like terms: -1.290909091 + 1.290909091 = 0.000000000 0.000000000 + x = -1.616137626 + 1.290909091 x = -1.616137626 + 1.290909091 Combine like terms: -1.616137626 + 1.290909091 = -0.325228535 x = -0.325228535 Simplifying x = -0.325228535Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.907046717, -0.325228535}
| v^2+-40v+400=0 | | 4.8+1.9n=0.43 | | 5x+7-3x=7+3x-5 | | a^3+8a^2+22a+20=0 | | -5(x+6)+262=10+12 | | -500/2x=10 | | (2/5)*(6)+2 | | -5a+6=-4a | | 45=3(7r-6) | | 35*z=805 | | -3-(-2+4x)=23 | | 1/3(2x-1)=4(x/6+2) | | x*2*9=168 | | 240/y=12 | | x*2*8=168 | | x*2*7=168 | | x/80=6 | | x*2*14=168 | | x*2*y=168 | | 284=39-W | | 8x+4=12x-4 | | x/-2=-7-(-10) | | -3+6+5x=7x-8x | | -3(x+11)+259=31+30 | | -16t^2-100t+100000=0 | | (3/2)x-(5/6)+x=(1/2)x+(2/3) | | y=10(3u+1)(1-5u) | | f(-1)=3y^2+7y-2 | | -7x-10y=70 | | 5(3+x)-(8x+9)=-4x | | -6w+5=7(w-3) | | -3(v+2)=2v+24 |